How i prove this ?

enter image source here

1 Answer
Apr 16, 2018

Please see below.

Explanation:

As #sin(alpha+-beta)=sinalphacosbeta+-cosalphasinbeta#

and #cos(alpha+-beta)=cosalphacosbeta∓sinalphasinbeta#

Hence #(sin(alpha+beta)-2sinalphacosbeta)/(2sinalphasinbeta+cos(alpha+beta))#

= #(sinalphacosbeta+cosalphasinbeta-2sinalphacosbeta)/(2sinalphasinbeta+cosalphacosbeta-sinalphasinbeta)#

= #(sinbetacosalpha-cosbetasinalpha)/(cosbetacosalpha+sinbetasinalpha)#

= #sin(beta-alpha)/cos(beta-alpha)#

= #tan(alpha-beta)#