As #sin(alpha+-beta)=sinalphacosbeta+-cosalphasinbeta#
and #cos(alpha+-beta)=cosalphacosbeta∓sinalphasinbeta#
Hence #(sin(alpha+beta)-2sinalphacosbeta)/(2sinalphasinbeta+cos(alpha+beta))#
= #(sinalphacosbeta+cosalphasinbeta-2sinalphacosbeta)/(2sinalphasinbeta+cosalphacosbeta-sinalphasinbeta)#
= #(sinbetacosalpha-cosbetasinalpha)/(cosbetacosalpha+sinbetasinalpha)#
= #sin(beta-alpha)/cos(beta-alpha)#
= #tan(alpha-beta)#