How I can solve this problem?

d/(dx)(ln(x-(x^2-1)^(1/2)))=?ddx(ln(x(x21)12))=?

1 Answer
Dec 8, 2017

The answer is =-1/sqrt(x^2-1)=1x21

Explanation:

Let f(x)=ln(x-sqrt(x^2-1))f(x)=ln(xx21)

Apply the chain rule

The derivative of lnu(x)lnu(x) is (u'(x))/(u(x))

ln(u(x))'=(u'(x))/(u(x))

(sqrtv(x))'=(v'(x))/(2(sqrtv(x)))

Therefore,

f'(x)=1/((x-sqrt(x^2-1)))*(1-1/(2sqrt(x^2-1))*2x)

=1/((x-sqrt(x^2-1)))*(1-x/sqrt(x^2-1))

=1/((x-sqrt(x^2-1)))*(sqrt(x^2-1)-x)/sqrt(x^2-1)

=-1/sqrt(x^2-1)