How do you write the vector a = 3i + 2j - 6k as a sum of two vectors, one parallel and one perpendicular to d = 2i - 4j + k?

1 Answer

lambda d = -8/21 (2, -4, 1)

n = 1/21 (79, 10, -118)

Explanation:

a = lambda d + n ; and n * d = 0
a = ((3), (2), (-6)) ; d = ((2), (-4), (1)) ; n = ((x), (y), (z))

n * d = 2x - 4y + z = 0 Rightarrow (2x + z)/4 = y

n = ((x), (x/2 + z/4), (z)) = x * ((1), (1/2), (0)) + z * ((0), (1/4), (1))

a = lambda d + n Leftrightarrow ((3), (2), (-6)) = lambda * ((2), (-4), (1)) + x * ((1), (1/2), (0)) + z * ((0), (1/4), (1))

((3), (8), (-6)) = ((2, 1, 0), (-16, 2, 1), (1, 0, 1)) * ((lambda), (x), (z))

L_2 := L_2 - L_3

((3), (14), (-6)) = ((2, 1, 0), (-17, 2, 0), (1, 0, 1)) * ((lambda), (x), (z))

L_1 := L_2 -2 L_1

((8), (14), (-6)) = ((-21, 0, 0), (-17, 2, 0), (1, 0, 1)) * ((lambda), (x), (z))

lambda = -8/21

14 = 17 * 8/21 + 2x Rightarrow (14 * 21 - 17 * 8)/42 = x = 79/21

-6 = -8/21 + z Rightarrow (-6 * 21 + 8)/21 = z = -118/21

y = 1/4 (2x + z) = 1/4 * (2*79-118)/21 = 10/21