How do you write the trigonometric form of 3i?

1 Answer
Aug 1, 2017

The trigonometric form is =10(cos198.4+isin198.4)

Explanation:

Let z=3i

The trigonometris form is

z=r(cosθ+isinθ)

If z=a+ib

z=|z|(a|z|+b|z|i)

The modulus is

|z|=a2+b2=(3)2+(1)2=10

Therefore,

z=10(310110i)

cosθ=310

and

sinθ=110

We are in the quadrant III

θ=198.4

Therefore,

z=10(cos198.4+isin198.4)=ei198.4