How do you write the trigonometric form into a complex number in standard form #1/4(cos225+isin225)#?
1 Answer
Aug 17, 2016
Explanation:
Firstly, consider the trig part inside the bracket.
Now
#225^@# is an angle in the 3rd quadrant where both the sin and cos ratios are#color(blue)"negative"#
#color(orange)"Reminder"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(cos225^@=-cos(225-180)^@=-cos45^@)color(white)(a/a)|)))# and
#color(red)(|bar(ul(color(white)(a/a)color(black)(sin225^@=-sin(225-180)^@=-sin45^@)color(white)(a/a)|)))# also
#color(red)(|bar(ul(color(white)(a/a)color(black)(sin45^@=cos45^@=1/sqrt2)color(white)(a/a)|)))#
#rArrcos225^@+isin225^@=-1/sqrt2-1/sqrt2 i# so now back to the original expression.
#1/4(cos225^@+isin225^@)=1/4(-1/sqrt2-1/sqrt2 i)# distributing gives.