# How do you write the standard form of a line given x intercept = -5, y intercept = -5?

Mar 30, 2018

$x + y = - 5$

#### Explanation:

$\text{the equation of a line in "color(blue)"standard form}$ is.

$\textcolor{red}{\overline{\underline{| \textcolor{w h i t e}{\frac{2}{2}} \textcolor{b l a c k}{A x + B y = C} \textcolor{w h i t e}{\frac{2}{2}} |}}}$

$\text{where A is a positive integer and B, C are integers}$

$\text{obtain the equation in "color(blue)"slope-intercept form}$

•color(white)(x)y=mx+b

$\text{where m is the slope and b the y-intercept}$

$\text{to calculate the slope use the "color(blue)"gradient formula}$

•color(white)(x)m=(y_2-y_1)/(x_2-x_1)

$\text{let "(x_1,y_1)=(-5,0)" and } \left({x}_{2} , {y}_{2}\right) = \left(0 , - 5\right)$

$\Rightarrow m = \frac{- 5 - 0}{0 - \left(- 5\right)} = \frac{- 5}{5} = - 1$

$\text{using "m=-1" and } b = - 5$

$\Rightarrow y = - x - 5 \leftarrow \textcolor{red}{\text{in slope-intercept form}}$

$\text{add x to both sides}$

$x + y = \cancel{- x} \cancel{+ x} - 5$

$\Rightarrow x + y = - 5 \leftarrow \textcolor{red}{\text{in standard form}}$