How do you write the rectangular coordinates for the point: (6, 3/2 pi)(6,32π)?

1 Answer
Mar 20, 2018

(-3,3sqrt(3))(3,33)

Explanation:

For given coordinates (r,theta)(r,θ), (r,theta)to(x,y)=>(rcostheta,rsintheta)(r,θ)(x,y)(rcosθ,rsinθ)

r=6r=6
theta=(2pi)/3θ=2π3

(6,(2pi)/3)to(x,y)=>(6cos((2pi)/3),6sin((2pi)/3))-=(-3,3sqrt(3))(6,2π3)(x,y)(6cos(2π3),6sin(2π3))(3,33)