Here two numbers are involved
One is 55 which is easy to write in trigonometric form as
5=5(1+i0)=5(cos0^@+isin0^@)5=5(1+i0)=5(cos0∘+isin0∘) or 5e^(i0)5ei0
For 2+3i2+3i, we know sqrt(2^2+3^2)=sqrt(4+9)=sqrt13√22+32=√4+9=√13
Hence 2+3i=sqrt13(2/sqrt13+i3/sqrt13)2+3i=√13(2√13+i3√13)
Now let sinalpha=3/sqrt13sinα=3√13 and cosalpha=2/sqrt13cosα=2√13, then
2+3i=sqrt13(cosalpha+isinalpha)=5e^(ialpha)2+3i=√13(cosα+isinα)=5eiα
and 5/(2+3i)=(5e^(i0))/(sqrt13e^(ialpha)52+3i=5ei0√13eiα
= 5/sqrt13xxe^(0-ialpha)=5/sqrt13e^(-ialpha)5√13×e0−iα=5√13e−iα
= 5/sqrt13(cos(-alpha)+isin(-alpha))5√13(cos(−α)+isin(−α))
= 5/sqrt13(cosalpha-isinalpha)5√13(cosα−isinα)
= 5/sqrt13(2/sqrt13-ixx3/sqrt13)5√13(2√13−i×3√13)
= 5/13(2-3i)=10/13-i15/13513(2−3i)=1013−i1513