Here two numbers are involved
One is #5# which is easy to write in trigonometric form as
#5=5(1+i0)=5(cos0^@+isin0^@)# or #5e^(i0)#
For #2+3i#, we know #sqrt(2^2+3^2)=sqrt(4+9)=sqrt13#
Hence #2+3i=sqrt13(2/sqrt13+i3/sqrt13)#
Now let #sinalpha=3/sqrt13# and #cosalpha=2/sqrt13#, then
#2+3i=sqrt13(cosalpha+isinalpha)=5e^(ialpha)#
and #5/(2+3i)=(5e^(i0))/(sqrt13e^(ialpha)#
= #5/sqrt13xxe^(0-ialpha)=5/sqrt13e^(-ialpha)#
= #5/sqrt13(cos(-alpha)+isin(-alpha))#
= #5/sqrt13(cosalpha-isinalpha)#
= #5/sqrt13(2/sqrt13-ixx3/sqrt13)#
= #5/13(2-3i)=10/13-i15/13#