How do you write the following in trigonometric form and perform the operation given (1+sqrt3i)/(6-3i)?

1 Answer
Jul 17, 2018

color(green)(=> 0.0178 + 0.2976 i)

Explanation:

z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))

z_1 = 1 + 3 i, z_2 = 6 - 3 i

r_1 = sqrt(1^2 + sqrt3^2) = 2

theta_1 = tan ^ (sqrt3)/ (1) = 60^@ ^@, " I Quadrant"

r_2 = sqrt(6^2 + (-3)^2) = sqrt 45

theta_2 = tan ^-1 (-3/ 6) ~~ 333.43^@, " IV Quadrant"

z_1 / z_2 = 2/sqrt(45) (cos (60- 333.43) + i sin (60- 333.43))

color(green)(=> 0.0178 + 0.2976 i)