How do you write the complex number in trigonometric form -7i?

1 Answer
Jan 6, 2018

The answer is =7(cos(-pi/2)+isin(-pi/2))=7e^(-1/2ipi)

Explanation:

Any complex number z=a+ib can be represented as

z=r(costheta+isintheta)

Where,

r=||z||=sqrt(a^2+b^2)

costheta=a/(||z||)

and

sintheta=b/||z||

Here, we have

z=0-7i

||z||=sqrt((0)^2+(-7)^2)=7

z=7((0/7)+(-7/7)i)

costheta=0 and sin theta=-1

Therefore,

theta =-pi/2 , [mod 2pi]

So,

z=7(cos(-pi/2)+isin(-pi/2))