How do you write the complex number in trigonometric form -2(1+sqrt3i)?

1 Answer
Feb 23, 2017

The trigonometric form is =-4(cos(pi/3)+isin(pi/3))

Explanation:

The trigonometric form of a complex number z=a+ib is

z=r(costheta+isintheta)

Here, we have

z=-2(1+sqrt3i)

The modulus is

|z|=-2sqrt(1+3)=-2*2

z=-4(1/2+sqrt3/2i)

costheta=1/2 and sintheta=sqrt3/2

theta=pi/3

Therefore,

z=-4(cos(pi/3)+isin(pi/3))

=-4e^(pi/3i)