How do you write the complex number in trigonometric form #-1+sqrt3i#?
1 Answer
Aug 25, 2016
Explanation:
To convert from
#color(blue)"complex to trigonometric form"# That is
#x+yitor(costheta+isintheta)#
#color(orange)"Reminder"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(r=sqrt(x^2+y^2))color(white)(a/a)|)))" and " color(red)(|bar(ul(color(white)(a/a)color(black)(theta=tan^-1(y/x))color(white)(a/a)|)))# here x = - 1 and y
#=sqrt3#
#rArrr=sqrt((-1)^2+(sqrt3)^2)=sqrt4=2# Now
#-1+sqrt3 i# is in the 2nd quadrant, so we must ensure that#theta# is in the 2nd quadrant.
#theta=tan^-1(-sqrt3)=-pi/3" in 4th quadrant"#
#rArrtheta=(pi-pi/3)=(2pi)/3" in 2nd quadrant"#
#rArr-1+sqrt3i=2(cos((2pi)/3)+isin((2pi)/3))#