How do you write d2+12d+32 in factored form?

2 Answers
Sep 17, 2015

(d+4)(d+8) is the factorised form of the expression.

Explanation:

d2+12d+32

We can Split the Middle Term of this expression to factorise it.

In this technique, if we have to factorise an expression like ad2+bd+c, we need to think of 2 numbers such that:

N1N2=ac=132=32
and
N1+N2=b=12

After trying out a few numbers we get N1=8 and N2=4
84=32, and 8+4=12

d2+12d+32=d2+8d+4d+32

d(d+8)+4(d+8)

(d+4)(d+8) is the factorised form of the expression.

Sep 17, 2015

Factor: d2+12d+32

Ans: (x+4)(x+8)

Explanation:

I use the new AC Method (Socratic Search)

y=d2+12d+32=(d+p)(d+q)

Factor pairs of (32)(2,16)(4,8). This sum is

4+8=12=b

Then p=4 and q=8

Factored form: y=(d+4)(d+8)

NOTE . This new AC Method shows a systematic way to find the 2 numbers p and q. It also avoids the lengthy factoring by grouping.