How do you write an equation in standard form given point (-2,2) and (-5,5)?

1 Answer
Apr 11, 2018

#x+y=0#

Explanation:

#"the equation of a line in "color(blue)"standard form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(Ax+By=C)color(white)(2/2)|)))#

#"where A is a positive integer and B, C are integers"#

#"obtain the equation first of all in "color(blue)"slope-intercept form"#

#•color(white)(x)y=mx+b#

#"where m is the slope and b the y-intercept"#

#"to calculate m use the "color(blue)"gradient formula"#

#•color(white)(x)m=(y_2-y_1)/(x_2-x_1)#

#"let "(x_1,y_1)=(-2,2)" and "(x_2,y_2)=(-5,5)#

#rArrm=(5-2)/(-5-(-2))=3/(-3)=-1#

#rArry=-x+blarrcolor(blue)"is the partial equation"#

#"to find b substitute either of the 2 given points into "#
#"the partial equation"#

#"using "(-2,2)" then"#

#2=2+brArrb=0#

#rArry=-xlarrcolor(blue)"in slope-intercept form"#

#rArrx+y=0larrcolor(red)"in standard form"#