How do you write a polynomial with zeros 4-i and sqrt(10)?
1 Answer
Aug 16, 2016
This one works:
#x^2-(4+sqrt(10)-i)x+(4sqrt(10)-(sqrt(10))i)#
...but you probably want this one:
#x^4-8x^3+7x^2+80x-170#
Explanation:
If you allow coefficients of arbitrary type, then the polynomial of lowest degree with these zeros is simply:
#(x-(4-i))(x-sqrt(10))#
#= x^2-(4+sqrt(10)-i)x+(4sqrt(10)-(sqrt(10))i)#
If you want rational coefficients, then include the Complex conjugate
#(x-(4-i))(x-(4+i))(x-sqrt(10))(x+sqrt(10))#
#=((x-4)^2-i^2)(x^2-10)#
#=(x^2-8x+17)(x^2-10)#
#=x^4-8x^3+7x^2+80x-170#