How do you write a polynomial in standard form given zeros 1 (multiplicity 2), -2 (multiplicity 3)? Precalculus Polynomial Functions of Higher Degree Zeros 1 Answer Shwetank Mauria May 26, 2016 #x^5+4x^4+x^3-10x^2-4x+8=0# Explanation: If #{alpha,beta,gamma,delta,..}# are the zeros of a function, then the function is #(x-alpha)(x-beta)(x-gamma)(x-delta)...=0# Here zeros are #1# (multiplicity #2#) and #-2# (multiplicity #3#), hence function is #(x-1)(x-1)(x+2)(x+2)(x+2)=0# or #(x-1)^2(x+2)^3=0# or #(x^2-2x+1)(x^3+6x^2+12x+8)=0# or #x^2(x^3+6x^2+12x+8)-2x(x^3+6x^2+12x+8)+1(x^3+6x^2+12x+8)=0# #x^5+6x^4+12x^3+8x^2-2x^4-12x^3-24x^2-16x+x^3+6x^2+12x+8=0# #x^5+4x^4+x^3-10x^2-4x+8=0# Answer link Related questions What is a zero of a function? How do I find the real zeros of a function? How do I find the real zeros of a function on a calculator? What do the zeros of a function represent? What are the zeros of #f(x) = 5x^7 − x + 216#? What are the zeros of #f(x)= −4x^5 + 3#? How many times does #f(x)= 6x^11 - 3x^5 + 2# intersect the x-axis? What are the real zeros of #f(x) = 3x^6 + 1#? How do you find the roots for #4x^4-26x^3+50x^2-52x+84=0#? What are the intercepts for the graphs of the equation #y=(x^2-49)/(7x^4)#? See all questions in Zeros Impact of this question 1546 views around the world You can reuse this answer Creative Commons License