How do you write #3 sin pix + 3 (sqrt 3) cos pix# only in terms of sin? Trigonometry Trigonometric Identities and Equations Fundamental Identities 1 Answer P dilip_k Apr 30, 2016 #=6sin(pix+pi/3)# Explanation: #3 sin pix + 3 (sqrt 3) cos pix# #=6 (1/2xxsin pix +(sqrt 3)/2 cos pix)# ( taking 6 common) putting #1/2=cos(pi/3) and sqrt3/2=sin(pi/3)# #=6 (cos(pi/3)xxsin pix+sin(pi/3) cos pix)# applying formula # sinAcosB+cosA sinB=sin(A+B)# #=6sin(pix+pi/3)# Answer link Related questions How do you use the fundamental trigonometric identities to determine the simplified form of the... How do you apply the fundamental identities to values of #theta# and show that they are true? How do you use the fundamental identities to prove other identities? What are even and odd functions? Is sine, cosine, tangent functions odd or even? How do you simplify #sec xcos (frac{\pi}{2} - x )#? If #csc z = \frac{17}{8}# and #cos z= - \frac{15}{17}#, then how do you find #cot z#? How do you simplify #\frac{\sin^4 \theta - \cos^4 \theta}{\sin^2 \theta - \cos^2 \theta} # using... How do you prove that tangent is an odd function? How do you prove that #sec(pi/3)tan(pi/3)=2sqrt(3)#? See all questions in Fundamental Identities Impact of this question 7065 views around the world You can reuse this answer Creative Commons License