How do you use the unit circle to find the values of the six trigonometric functions for 150 degrees?

1 Answer
Jun 17, 2018

cos150=-sqrt3/2

sin150=1/2

tan150=-sqrt3/3

cot150=-sqrt3

sec150=(-2sqrt3)/3

csc150=2

Explanation:

We know the reference angle is 30^@, and from the unit circle, we know the coordinates for 30^@ are

(sqrt3/2,1/2)

Our angle, 150^@ is in the second quadrant, where cosine is negative and sine is positive. Unit circle coordinates are given by

(costheta, sintheta)

This means the coordinates for 150^@ are

(-sqrt3/2,1/2)

We know:

color(blue)(cos150=-sqrt3/2)

color(darkblue)(sin150=1/2)

color(lime)(tantheta)=color(darkblue)(sintheta)/color(blue)(costheta)

And from our definitions of trig functions:

color(red)(cottheta)=1/color(lime)(tantheta)

color(darkviolet)(sectheta)=1/color(blue)(costheta)

color(orange)(csctheta)=1/color(darkblue)(sintheta)

After plugging in the appropriate values (and rationalizing the denominator when necessary), we get

color(lime)(tan150=-sqrt3/3)

color(red)(cot150=-sqrt3)

color(darkviolet)(sec150=(-2sqrt3)/3)

color(orange)(csc150=2)

Hope this helps!