We know the reference angle is 30^@, and from the unit circle, we know the coordinates for 30^@ are
(sqrt3/2,1/2)
Our angle, 150^@ is in the second quadrant, where cosine is negative and sine is positive. Unit circle coordinates are given by
(costheta, sintheta)
This means the coordinates for 150^@ are
(-sqrt3/2,1/2)
We know:
color(blue)(cos150=-sqrt3/2)
color(darkblue)(sin150=1/2)
color(lime)(tantheta)=color(darkblue)(sintheta)/color(blue)(costheta)
And from our definitions of trig functions:
color(red)(cottheta)=1/color(lime)(tantheta)
color(darkviolet)(sectheta)=1/color(blue)(costheta)
color(orange)(csctheta)=1/color(darkblue)(sintheta)
After plugging in the appropriate values (and rationalizing the denominator when necessary), we get
color(lime)(tan150=-sqrt3/3)
color(red)(cot150=-sqrt3)
color(darkviolet)(sec150=(-2sqrt3)/3)
color(orange)(csc150=2)
Hope this helps!