How do you use the unit circle to find the exact value for cos ((7pi)/3)?
2 Answers
Go
The pattern goes
Or, you can use the additive identities of
\mathbf(cos(u + v) = cosucosv - sinusinv)
Using
color(blue)(cos((7pi)/3))
cos((6pi)/3 + pi/3) = cos(2pi + pi/3)
= cos2picos(pi/3) - sin2pisin(pi/3)
= cos0cos(60^o) - sin0sin(60^o)
= 1*cos(60^o) - 0*sin(60^o)
= cos(60^o) = color(blue)(1/2)
1/2
Explanation:
Another way.
cos ((7pi)/3) = cos (pi/3 + 2pi) = cos (pi/3), or cos 60^@
Call M the extremity of arc (pi/3), Call O the origin, and A the origin of all arcs. The triangle MAO is equilateral, since its 3 angles all equal to
Therefor,