How do you use the Integral test on the infinite series sum_(n=1)^oo1/n^5 ?

1 Answer
Sep 24, 2014

By Integral Test,

sum_{n=1}^infty 1/n^5 converges.

Let us look at some details.

Let us evaluate the corresponding improper integral.

int_1^infty 1/x^5 dx

=lim_{t to infty}int_1^tx^{-5} dx

=lim_{t to infty}[x^{-4}/-4]_1^t

=-1/4lim_{t to infty}[1/x^4]_1^t

=-1/4 lim_{t to infty}[1/t^4-1]

=-1/4(0-1)=1/4

Since the integral

int_1^infty 1/x^5 dx

converges to 1/4,

sum_{n=1}^infty 1/n^5

also converges by Integral Test.