"The definition of the derivative of "f(x)" is : "
f'(x) = lim_{h->0} ( f(x+h) - f(x) ) / h
"So here we have "
lim_{h->0} ( (x+h)^3 - 2 (x+h)^2 + 5 (x+h) - 6 - x^3 + 2 x^2 - 5 x + 6 ) / h
= ((x^3 + 3 h x^2 + 3 h^2 x + h^3) - 2 (x^2 + 2 h x + h^2) + 5 (x + h) - x^3 + 2 x^2 - 5 x)/h
= lim_{h->0} (3 h x^2 + 3 h^2 x + h^3 - 4 h x - 2 h^2 + 5 h)/h
= lim_{h->0} 3 x^2 + 3 h x + h^2 - 4 x - 2 h + 5
= lim_{h->0} 3 x^2 - 4 x + 5 + h^2 + 3 h x - 2 h
= 3 x^2 - 4 x + 5 + lim_{h->0} h^2 + 3 h x - 2 h
= 3 x^2 - 4 x + 5 + 0
= 3 x^2 - 4 x + 5