How do you use the definition of a derivative to find the derivative of f(x)=x^2+x?

1 Answer
Jan 29, 2017

I found: f'(x)=2x+1

Explanation:

The definition tells us that:

f'(x)=lim_(h->0)(f(x+h)-f(x))/h

Where h is a small increment.

With our function we have:

f'(x)=lim_(h->0)([(x+h)^2+(x+h)]-[(x^2+x)])/h

Expanding:

f'(x)=lim_(h->0)(cancel(x^2)+2xh+h^2+cancel(x)+hcancel(-x^2)cancel(-x))/h

Collect h in the numerator:

f'(x)=lim_(h->0)(cancel(h)[2x+h+1])/cancel(h)

As h->0:

f'(x)=lim_(h->0)(2x+h+1)=2x+1