How do you use the definition of a derivative to find the derivative of f(x)=3x^4+2x^3-3x-2?

1 Answer
Feb 3, 2017

(df)/(dx)=12x^3+6x^2-3

Explanation:

The definition of derivative gives (df)/(dx)=Lt_(h->0)(f(x+h)-f(x))/h

As f(x)=3x^4+2x^3-3x-2,

f(x+h))=3(x+h)^4+2(x+h)^3-3(x+h)-2

= 3(x^4+4x^3h+6x^2h^2+4xh^3+h^4)+2(x^3+3x^2h+2xh^2+h^3)-3x-3h-2

= 3x^4+2x^3-3x-2+h(12x^3+6x^2-3)+h^2(18x^2+4x)+12xh^3+3h^4

and f(x+h)-f(x)=h(12x^3+6x^2-3)+h^2(18x^2+4x)+12xh^3+3h^4

and (df)/(dx)=Lt_(h->0)(f(x+h)-f(x))/h

= Lt_(h->0)1/h(h(12x^3+6x^2-3)+h^2(18x^2+4x)+12xh^3+3h^4)

= Lt_(h->0)12x^3+6x^2-3+h(18x^2+4x)+12xh^2+3h^3

= 12x^3+6x^2-3