How do you use the Binomial Theorem to find the value of #99^4#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer maganbhai P. May 3, 2018 #99^4=96059601# Explanation: We know that, #color(blue)((x+a)^n=nC_0x^n+nC_1x^(n-1)a+nC_2x^(n- 2)a^2+...+nC_na^n# Now, #99^4=(100-1)^4=(100+(-1))^4#, Take , #color(blue)(x=100 , a=-1 and n=4# #99^4=4C_0(100)^4+4C_1(100)^3(-1)+4C_2(100)^2(-1)^2+4C_ 3(100)^1(-1)^3+4C_4 (-1)^4# Here, #4C_0=1,4C_1=4,4C_2=(4xx3)/(2xx1)=6,4C_3= (4xx3xx2)/(3xx2xx1)=4 ,4C_4=1and 100=10^2# #=>99^4=1(10^8)-4(10^6)+6(10^4)-4(10^2)+1# #=>99^4=100000000-4000000+60000-400+1# #=>99^4=100060001-4000400# #=>99^4=96059601# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 11506 views around the world You can reuse this answer Creative Commons License