How do you use the Binomial Theorem to expand #(d-3b)^3#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Narad T. Sep 4, 2017 The answer is #=d^3-9d^2b+27db^2-27d^3# Explanation: The binomial theorem is #(x+y)^n=((n),(0))x^n+((n),(1))x^(n-1)y+((n),(2))x^(n-2)y^2+........+((n),(n))y^n# #AA n in NN# and #x,y in RR# When #n=3# #(x+y)^3=x^3+3x^2y+3xy^2+y^3# Therefore, #(d-3b)^3=d^3+3d^2*(-3b)+3d*(-3d)^2+(-3d)^3# #=d^3-9d^2b+27db^2-27d^3# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 2119 views around the world You can reuse this answer Creative Commons License