How do you use the binomial theorem to expand and simplify the expression #(x+2y)^4#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Harish Chandra Rajpoot Jul 21, 2018 #(x+2y)^4=x^4+8x^3y+24x^2y^2+32xy^3+16y^4# Explanation: Using Binomial expansion of #(x+2y)^4# as follows #(x+2y)^4# #=^4C_0x^4+^4C_1x^3(2y)+^4C_2x^2(2y)^2+^4C_3x(2y)^3+^4C_4(2y)^4# #=x^4+4x^3(2y)+6x^2(4y^2)+4x(8y^3)+16y^4# #=x^4+8x^3y+24x^2y^2+32xy^3+16y^4# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 10699 views around the world You can reuse this answer Creative Commons License