How do you use the binomial theorem to expand #(1+i)^4#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Binayaka C. Jun 7, 2017 #(1+i)^4 = -4# Explanation: We know #(a+b)^n= nC_0 a^n*b^0 +nC_1 a^(n-1)*b^1 + nC_2 a^(n-2)*b^2+..........+nC_n a^(n-n)*b^n# Here #a=1,b=i,n=4# We know, #nC_r = (n!)/(r!*(n-r)!# #:.4C_0 =1 , 4C_1 =4, 4C_2 =6,4C_3 =4, 4C_4 =1 # #i^2=-1 ,i^3= -i,i^4=1# #:.(1+i)^4 = 1^4+4*1^3*i+6*1^2*i^2+4*1*i^3+i^4# or #(1+i)^4 = 1+4*i+6*i^2+4*i^3+i^4# or #(1+i)^4 = 1+cancel(4i)-6-cancel(4i)+1 = -4# [Ans] Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 3460 views around the world You can reuse this answer Creative Commons License