How do you use the binomial series to expand the function f(x)=(1-x)^(2/3)f(x)=(1x)23 ?

1 Answer
Sep 27, 2014

This is a natural extension of raising a binomial to a whole number power:
(a+b)^n=sum_(k=0)^n (n/k)a^(n-k)b^k(a+b)n=nk=0(nk)ankbk (sorry about the inner bar)
Where (n/k)=(n!)/(k!(n-k)!)=(n(n-1)…(n-k+1))/(k!)(nk)=n!k!(nk)!=n(n1)(nk+1)k!

So we can apply this to any exponent r even if r is an arbitrary real number.

(a+b)^r=sum_(k=0)^oo (r(r-1)…(r-k+1))/(k!) a^(r-k)b^k(a+b)r=k=0r(r1)(rk+1)k!arkbk

Now put your info in, with r=2/3, a=1, b=-x:r=23,a=1,b=x:

(1-x)^(2/3)=sum_(k=0)^oo (2/3(2/3-1)…(2/3-k+1))/(k!) 1^(2/3-k)(-x)^k(1x)23=k=023(231)(23k+1)k!123k(x)k

=(1)^(2/3)+(2/3)/1(1)^(-1/3)(-x)^1+((2/3)(2/3-1))/2(1)^(-4/3)(-x)^2+…=(1)23+231(1)13(x)1+(23)(231)2(1)43(x)2+

=1-2/3x-1/9x^2+…=123x19x2+

There's the start of the series; I dare you to compute the next two terms. Take the \dansmath challenge/!