How do you use the binomial series to expand #(2x+1)^4#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer sankarankalyanam Jan 29, 2018 #color(brown)((2x+1)^4 = 16x^4 + 32x^3 + 24x^2 + 8x + 1)# Explanation: Refer Pascal's triangle for power 4 1 4 6 4 1 #(2x+1)^4 = (2x)^4 + 4 * (2x)^3 * 1 + 6 * (2x)^2 * 1^2 + 4 * (2x)^1 * 1^3 + 1^4# #color(brown)((2x+1)^4 = 16x^4 + 32x^3 + 24x^2 + 8x + 1)# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 1231 views around the world You can reuse this answer Creative Commons License