How do you use the binomial series to expand (2x - 1)^(1/3)? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Narad T. Nov 16, 2016 The series is =-1+(2x)/3+(4x^2)/9+(40x^2)/81+... Explanation: The binomial theorem is (a+b)^n=a^n+((n),(1))a^(n-1)b+((n),(2))a^(n-2)b^2+((n),(3))a^(n-2)b^3+.. ((n),(1))=(n!)/((n-1)!1!)=n ((n),(2))=(n!)/((n-2)!(2!))=(n(n-1))/(1*2) We rewrite the expression as (2x-1)^(1/3)=(-1+2x)^(1/3) = (-1)^(1/3) + 1/3*((-1)^(-2/3)) * (2x) + (1/3) (-2/3)) * (1/2)* (-1)^(-5/6) ( 2 x)^2 + (1/3)(-2/3)(-5/3)*(1/6)(2x)^3 =-1+(2x)/3+(4x^2)/9+(40x^2)/81+... Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand (d-4b)^3? How do I use the the binomial theorem to expand (t + w)^4? How do I use the the binomial theorem to expand (v - u)^6? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of (2x+3)^10? How do you use the binomial series to expand f(x)=1/(sqrt(1+x^2))? How do you use the binomial series to expand 1 / (1+x)^4? How do you use the binomial series to expand f(x)=(1+x)^(1/3 )? See all questions in The Binomial Theorem Impact of this question 1642 views around the world You can reuse this answer Creative Commons License