How do you use the binomial series to expand #(1 + x)^4#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Veddesh #phi# Feb 1, 2016 Use the pascal's triangle to find the answer easily: #rarr(a+b)^4=1a^4+4a^3b+6a^2b^2+4ab^3+1b^4# #rarr(1+x)^4=1(1)^4+4(1^3)x+6(1^2)x^2+4(1)x^3+1(x^4)=1^4+4x+6x^2+4x^3+1(x^4)=1+4x+6x^2+4x^3+x^4# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 5091 views around the world You can reuse this answer Creative Commons License