How do you use the binomial formula to find expand #(x^2y - 1)^5#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer 冠廷 李. May 3, 2017 Detail in explanation Explanation: #(x^2y-1)^5# #=5c5(x^2y)^5+5c4(x^2y)^4(-1)+5c3(x^2y)^3(-1)^2+5c2(x^2y)^2(-1)^3+5c1(x^2y)(-1)^4+5c0(x^2y)^0(-1)^5# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 2150 views around the world You can reuse this answer Creative Commons License