How do you use Heron's formula to determine the area of a triangle with sides of that are 15, 18, and 19 units in length?

2 Answers

Area =126.554" "=126.554 square units

Explanation:

Let the sides be a=15a=15 and b=18b=18 and c=19c=19

Solve for the half perimeter s=(a+b+c)/2=(15+18+19)/2=26s=a+b+c2=15+18+192=26

The Heron's Formula for the area of the triangle

Area =sqrt(s(s-a)(s-b)(s-c))=s(sa)(sb)(sc)

Area =sqrt(26(26-15)(26-18)(26-19))=26(2615)(2618)(2619)

Area =126.554" "=126.554 square units

God bless....I hope the explanation is useful.

Mar 26, 2016

≈ 126.55 square units

Explanation:

This is a 2 step process.

step 1 : Calculate half the perimeter (s) of the triangle.

let a = 15 , b = 18 and c = 19

s = (a+b+c)/2 = (15+18+19)/2 = 52/2 = 26 s=a+b+c2=15+18+192=522=26

step 2 : Calculate the area using

area = sqrt(s(s-a)(s-b)(s-c))=s(sa)(sb)(sc)

= sqrt(26(26-15)(26-18)(26-19))=26(2615)(2618)(2619)

= sqrt(26xx11xx8xx7) ≈ 126.55" square units " =26×11×8×7126.55 square units