How do you use DeMoivre's theorem to simplify (sqrt(e^(10i)))^6(e10i)6?

1 Answer
Apr 4, 2017

(sqrt(e^(10i)))^6=cos30+isin30=sqrt3/2+i1/2(e10i)6=cos30+isin30=32+i12

Explanation:

According to DeMoivre's Theorem if

z=re^(itheta)=r(costheta+isintheta)z=reiθ=r(cosθ+isinθ), then for all ninQnQ

z^n=r^n e^(i ntheta)=r^n(cosntheta+isinntheta)zn=rneinθ=rn(cosnθ+isinnθ)

Hence, (sqrt(e^(10i)))^6(e10i)6

= ((e^(10i))^(1/2))^6((e10i)12)6

= (e^(10i))^(1/2xx6)(e10i)12×6

= (e^(10i))^3(e10i)3

= e^(10ixx3)e10i×3

= e^(30i)e30i

= cos30+isin30cos30+isin30

= sqrt3/2+i1/232+i12