How do you use DeMoivre's Theorem to simplify (sqrt5-4i)^3?

1 Answer
Nov 15, 2016

(sqrt5-4i)^3=-43sqrt5-4i

Explanation:

According to DeMoivre's theorem

(r(costheta+isintheta))^n=r^n(cosntheta+isinntheta)

Now let sqrt5-4i=r(costheta+isintheta)

hence rcostheta=1 and rsintheta=-sqrt3

hence squaring and adding r^2=((sqrt5)^2+(-4)^2)=5+16=21

and r=sqrt21, costheta=sqrt(5/21) and sintheta=-4/sqrt21

Therefore using DeMoivre's theorem

(sqrt5-4i)^3=(sqrt21)^3(cos3theta+isin3theta)

As cos3theta=4cos^3theta-3costheta=4(sqrt(5/21))^3-3sqrt(5/21)

= 20/21sqrt(5/21)-3sqrt(5/21)=-43/21sqrt(5/21)

and sin3theta=3sintheta-4sin^3theta=3(-4/sqrt21)-4(-4/sqrt21)^3

= -12/sqrt21+256/(21sqrt21)=(-252+256)/(21sqrt21)=-4/(21sqrt21)

Hence, (sqrt5-4i)^3=(sqrt21)^3(-43/21sqrt(5/21)-i4/(21sqrt21))

= -43sqrt5-4i