How do you use DeMoivre's theorem to simplify (sqrt3+i)^8?

1 Answer
Nov 21, 2016

(sqrt3+i)^8=-128-128sqrt3*i

Explanation:

DeMoivre's theorem states that given a complex number in its trigonometric form r(costheta+isintheta),

(r(costheta+isintheta))^n=r^n(cosntheta+isinntheta)

Now let sqrt3+i=rcostheta+irsintheta, which means

rcostheta=sqrt3 and rsintheta=1 and hence

r=sqrt((sqrt3)^2+1^2)=sqrt(3+1)=sqrt4=2

as such costheta=sqrt3/2 and sintheta=1/2 i.e. theta=pi/6

Hence, (sqrt3+i)^8=(2(cos(pi/6)+isin(pi/6)))^8

and using DEMoivre's Theorem, this is equal to

2^8(cos((8pi)/6)+isin((8pi)/6))

= 256(-1/2-i*sqrt3/2)

= -128-128sqrt3*i