De Moivre's Theorem says that:
**If a complex number #z# is given in trigonometric form: **
#z=r(cosvarphi+isinvarphi)#
Then #n-th# power of #z# is given as:
#z^n=|z|^n*(cosnvarphi+isinnvarphi)#
So first thing to do is to change #z=sqrt(3)+i# into trigonometric form:
#|z|=sqrt(sqrt(3)^2+1^2)=sqrt(3+1)=sqrt(4)=2#
#cosvarphi=(re(z))/r=sqrt(3)/2 => varphi=30^o#
So the trigonometric form of #z# is:
#z=2(cos30+isin30)#
Now we can calculate #z^7# according to the de Moivre's theorem:
#z^7=2^7*(cos 7*30+isin7*30)#
#z^7=128*(cos210+isin210)#
#z^7=128*(cos(180+30)+isin(180+30))#
#z^7=128*(-cos30-sin30i)#
#z^7=128*(-sqrt(3)/2-1/2i)#
Answer: #z^7=-64sqrt(3)-64i#