To use DeMoivre's Theorem, we need to convert
z=-sqrt3+i=x+iyz=−√3+i=x+iy into Polar Form, i.e.,
r(costheta+isintheta), where, r>0, &, theta in (-pi,pi]r(cosθ+isinθ),where,r>0,&,θ∈(−π,π].
z=x+iy=r(costheta+isintheta)=rcisthetaz=x+iy=r(cosθ+isinθ)=rcisθ
rArr x=rcostheta, y=rsintheta, r=sqrt(x^2+y^2)⇒x=rcosθ,y=rsinθ,r=√x2+y2
:. r=sqrt{(-sqrt3)^2+1^2}=2
Hence, from x=rcostheta, costheta=-sqrt3/2, "&, similarly," sintheta=1/2
"clearly", theta=(5pi)/6
Thus, -sqrt3+i=2cis((5pi)/6).
Now, by DeMoivre's Theorem, (rcistheta)^n=r^ncis(ntheta)
In our case, n=5, r=2,theta=(5pi)/6
:.(-sqrt3+i)^5=(2cis(5pi)/6)^5
=(2^5)(cis(5*(5pi)/6))
=32(cis(25pi)/6)
=32(cis(4pi+pi/6))
=32(cos(4pi+pi/6)+isin(4pi+pi/6))
=32(cos(pi/6)+isin(pi/6))
=32(sqrt3/2+1/2i)
=16(sqrt3+i).
Enjoy Maths.!