How do you use DeMoivre's theorem to simplify (-sqrt3+i)^5(3+i)5?

1 Answer
Aug 23, 2016

(-sqrt3+i)^5=16(sqrt3+i)(3+i)5=16(3+i).

Explanation:

To use DeMoivre's Theorem, we need to convert

z=-sqrt3+i=x+iyz=3+i=x+iy into Polar Form, i.e.,

r(costheta+isintheta), where, r>0, &, theta in (-pi,pi]r(cosθ+isinθ),where,r>0,&,θ(π,π].

z=x+iy=r(costheta+isintheta)=rcisthetaz=x+iy=r(cosθ+isinθ)=rcisθ

rArr x=rcostheta, y=rsintheta, r=sqrt(x^2+y^2)x=rcosθ,y=rsinθ,r=x2+y2

:. r=sqrt{(-sqrt3)^2+1^2}=2

Hence, from x=rcostheta, costheta=-sqrt3/2, "&, similarly," sintheta=1/2

"clearly", theta=(5pi)/6

Thus, -sqrt3+i=2cis((5pi)/6).

Now, by DeMoivre's Theorem, (rcistheta)^n=r^ncis(ntheta)

In our case, n=5, r=2,theta=(5pi)/6

:.(-sqrt3+i)^5=(2cis(5pi)/6)^5

=(2^5)(cis(5*(5pi)/6))

=32(cis(25pi)/6)

=32(cis(4pi+pi/6))

=32(cos(4pi+pi/6)+isin(4pi+pi/6))

=32(cos(pi/6)+isin(pi/6))

=32(sqrt3/2+1/2i)

=16(sqrt3+i).

Enjoy Maths.!