How do you use DeMoivre's theorem to simplify (2e15i)8?

2 Answers
Dec 6, 2016

The answer is =8+i83

Explanation:

We use

eiθ=cosθ+isinθ

And DeMoivre's theorem

(cosθ+isinθ)n=cosnθ+isinnθ

2e15i=2(cos15+isin15)

(2e15i)8=(2(cos15+isin15))8

=(2)8(cos(815)+isin(815))

=16(cos120+isin120)

=16(12+i32)

=8(1+i3)

Dec 6, 2016

=13.0+i9.40, nearly.

Explanation:

(2e15i)8

=(2)8((e15i)8

=16e120i

=16cis120

=16cis((38.2π)

=16cis(.2π)

=16(cos(36o)+isin(36o))

=12.9+i9.40, nearly.