How do you use DeMoivre's Theorem to simplify (3-2i)^8?

1 Answer
Jan 2, 2017

(3-2i)^8=13^4(cos8theta+isin8theta), where theta=tan^(-1)(-2/3))

Explanation:

According to DeMoivre's theorem, if z=r(costheta+isintheta)

then z^n=r^n(cosntheta+isinntheta)

Hence to simplify (3-2i)^8, we should first put (3-2i) in polar form.

As rcostheta=3 and rsintheta=-2, r=sqrt(3^2+2^2)=sqrt13

and theta=tan^(-1)(-2/3)

Hence (3-2i)^8=(sqrt13)^8(cos8theta+isin8theta)

= 13^4(cos8theta+isin8theta), where theta=tan^(-1)(-2/3))