How do you use DeMoivre's Theorem to simplify (3-2i)^8(32i)8?

1 Answer
Jan 2, 2017

(3-2i)^8=13^4(cos8theta+isin8theta)(32i)8=134(cos8θ+isin8θ), where theta=tan^(-1)(-2/3))θ=tan1(23))

Explanation:

According to DeMoivre's theorem, if z=r(costheta+isintheta)z=r(cosθ+isinθ)

then z^n=r^n(cosntheta+isinntheta)zn=rn(cosnθ+isinnθ)

Hence to simplify (3-2i)^8(32i)8, we should first put (3-2i)(32i) in polar form.

As rcostheta=3rcosθ=3 and rsintheta=-2rsinθ=2, r=sqrt(3^2+2^2)=sqrt13r=32+22=13

and theta=tan^(-1)(-2/3)θ=tan1(23)

Hence (3-2i)^8=(sqrt13)^8(cos8theta+isin8theta)(32i)8=(13)8(cos8θ+isin8θ)

= 13^4(cos8theta+isin8theta)134(cos8θ+isin8θ), where theta=tan^(-1)(-2/3))θ=tan1(23))