How do you use DeMoivre's Theorem to simplify #(3-2i)^8#?

1 Answer
Jan 2, 2017

#(3-2i)^8=13^4(cos8theta+isin8theta)#, where #theta=tan^(-1)(-2/3))#

Explanation:

According to DeMoivre's theorem, if #z=r(costheta+isintheta)#

then #z^n=r^n(cosntheta+isinntheta)#

Hence to simplify #(3-2i)^8#, we should first put #(3-2i)# in polar form.

As #rcostheta=3# and #rsintheta=-2#, #r=sqrt(3^2+2^2)=sqrt13#

and #theta=tan^(-1)(-2/3)#

Hence #(3-2i)^8=(sqrt13)^8(cos8theta+isin8theta)#

= #13^4(cos8theta+isin8theta)#, where #theta=tan^(-1)(-2/3))#