How do you use DeMoivre's Theorem to simplify (3-2i)^5?

1 Answer
Feb 4, 2017

(3-2i)^5=69sqrt13(cos5alpha+isin5alpha),

where alpha=tan^(-1)(-2/3)

Explanation:

DeMoivre's Theorem states that if a complex number z in polar form is given by z=r(costheta+isintheta)

then z^n=r^n(cosntheta+isinntheta)

Here |3-2i|=sqrt(3^2+2^2)=sqrt13, hence we can write
3-2i as sqrt13(cosalpha+isinalpha), where alpha=tan^(-1)(-2/3)

Hence (3-2i)^5

= (sqrt13)^5(cos5alpha+isin5alpha)

= 169sqrt13(cos5alpha+isin5alpha)