How do you use DeMoivre's Theorem to simplify (2(cos(pi/10)+isin(pi/10)))^5(2(cos(π10)+isin(π10)))5?

1 Answer
Oct 21, 2016

(2(cos(pi/10)+isin(pi/10)))^5=32i(2(cos(π10)+isin(π10)))5=32i

Explanation:

DeMoivre's Theorem states that for a complex number z=r(costheta+isintheta)z=r(cosθ+isinθ),

z^n=r^n(cosntheta+irsinntheta)zn=rn(cosnθ+irsinnθ)

Hence (2(cos(pi/10)+isin(pi/10)))^5(2(cos(π10)+isin(π10)))5

= 2^5(cosn(5xxpi/10)+isin(5xxpi/10))25(cosn(5×π10)+isin(5×π10))

= 32(cosn(pi/2)+isin(pi/2))32(cosn(π2)+isin(π2))

= 32(0+ixx1)32(0+i×1)

= 32i32i