How do you use DeMoivre's Theorem to simplify (2+2i)^6?

1 Answer
Oct 7, 2016

(2+2i)^6=-512i

Explanation:

De Moivre's Theorem states that if a complex number

z=r(costheta+isintheta), then

z*n=r^n(cosntheta+isinntheta)

Now, in 2+2i as its absolute value is sqrt(2^2+2^2)=sqrt8=2sqrt2, it can be written as

2+2i=2sqrt2(1/sqrt2+i*1/sqrt2)

= 2sqrt2(cos(pi/4)+isin(pi/4))

Hence (2+2i)^6=(2sqrt2)^6(cos(pi/4xx6)+isin(pi/4xx6))

= 2^6xx2^3(cos((3pi)/2)+isin((3pi)/2))

= 512(0-i)=-512i