How do you use DeMoivre's theorem to simplify (1-sqrt3i)^3?

1 Answer
Nov 14, 2016

(1-sqrt3i)^3=-8

Explanation:

According to DeMoivre's theorem

(r(costheta+isintheta))^n=r^n(cosntheta+isinntheta)

Now let 1-sqrt3i=r(costheta+isintheta)

hence rcostheta=1 and rsintheta=-sqrt3

hence squaring and adding r^2=(1^2+(-sqrt3)^2)=1+3=4

and r=2, costheta=1/2 and sintheta=-sqrt3/2

hence, theta=-pi/3

Therefore 1-sqrt3i=2(cos(-pi/3)+isin(-pi/3)) and using DeMoivre's theorem

(1-sqrt3i)^3=2^3(cos(-3pi/3)+isin(-3pi/3))

= 2^3(cos(-pi)+isin(-pi))

= 8(-1+i*0)

= -8