How do you use DeMoivre's theorem to simplify (1+i)4?

1 Answer
Aug 21, 2017

The answer is =4

Explanation:

We start by writing z=1+i, in trigonometric form

|z|=(1)2+12=2

z=2(12+12i)

cosθ=12, , θ=34π

sinθ=12, , θ=34π

The trigonometric form is

z=2(cos(34π)+isin(34π))

Applying Demoivre's theorem

(cosθ+isinθ)n=cos(nθ)+isin(nθ)

z4=(2(cos(34π)+isin(34π))4

=(2)4(cos(34π4)+isin(34π4))

=4(cos(3π)+isin(3π))

=4(1+i0)

=4