How do you use DeMoivre's theorem to simplify #(1+i)^4#?
1 Answer
Sep 11, 2016
Explanation:
Note that
#1+i = sqrt(2)(cos (pi/4) + i sin (pi/4))#
De Moivre tells us that:
#(cos theta + i sin theta)^n = cos n theta + i sin n theta#
So we find:
#(1+i)^4 = (sqrt(2)(cos (pi/4) + i sin (pi/4)))^4#
#color(white)((1+i)^4) = (sqrt(2))^4(cos (pi/4) + i sin (pi/4))^4#
#color(white)((1+i)^4) = 4(cos pi + i sin pi)#
#color(white)((1+i)^4) = 4((-1) + i (0))#
#color(white)((1+i)^4) = -4#