How do you use DeMoivre's theorem to simplify (1+i)^4?

1 Answer
Sep 11, 2016

(1+i)^4 = -4

Explanation:

Note that

1+i = sqrt(2)(cos (pi/4) + i sin (pi/4))

De Moivre tells us that:

(cos theta + i sin theta)^n = cos n theta + i sin n theta

So we find:

(1+i)^4 = (sqrt(2)(cos (pi/4) + i sin (pi/4)))^4

color(white)((1+i)^4) = (sqrt(2))^4(cos (pi/4) + i sin (pi/4))^4

color(white)((1+i)^4) = 4(cos pi + i sin pi)

color(white)((1+i)^4) = 4((-1) + i (0))

color(white)((1+i)^4) = -4