How do you use DeMoivre's theorem to simplify (-1/2-sqrt3/2i)^3?
1 Answer
Sep 29, 2016
Explanation:
de Moivre's theorem tells us that:
(cos theta + i sin theta)^n = cos n theta + i sin n theta
So we find:
(-1/2-sqrt(3)/2i)^3 = (cos (-(2pi)/3) + i sin (-(2pi)/3))^3
color(white)((-1/2-sqrt(3)/2i)^3) = cos (-2pi) + i sin (-2pi)
color(white)((-1/2-sqrt(3)/2i)^3) = 1 + i * 0
color(white)((-1/2-sqrt(3)/2i)^3) = 1