How do you use DeMoivre's theorem to simplify (-1/2+sqrt3/2i)^3(12+32i)3?

2 Answers
Nov 23, 2016

The answer is =1=1

Explanation:

Let z=-1/2+isqrt3/2z=12+i32

We have to write zz in trigonometric form in order to apply DeMoivre's theorem

z=r(costheta+isintheta)z=r(cosθ+isinθ)

r=1r=1

costheta=-1/2cosθ=12

sintheta=sqrt3/2sinθ=32

So, thetaθ is located in the 2nd quadrant

theta=2pi/3θ=2π3

Therefore, z=cos((2pi)/3)+isin((2pi)/3)z=cos(2π3)+isin(2π3)

We need z^3z3

We use DeMoivre 's theorem,
(costheta+isintheta)^n=cosntheta+isinntheta(cosθ+isinθ)n=cosnθ+isinnθ

z^3=(cos((2pi)/3)+isin((2pi)/3))^3z3=(cos(2π3)+isin(2π3))3

=cos(2pi/3*3)+isin(2pi/3*3)=cos(2π33)+isin(2π33)

=cos2pi+isin2pi=cos2π+isin2π

=1=1

Nov 23, 2016

(-1/2+sqrt3/2i)^3=1(12+32i)3=1

Explanation:

According to DeMoivre's theorem, if a+ib=rcostheta+irsinthetaa+ib=rcosθ+irsinθ

then (a+ib)^n=r^n(cosntheta+isinntheta)(a+ib)n=rn(cosnθ+isinnθ)

Writing -1/2+sqrt3/2i12+32i in trigonometric form

-1/2+sqrt3/2i=cos((2pi)/3)+isin((2pi)/3)12+32i=cos(2π3)+isin(2π3)

Hence (-1/2+sqrt3/2i)^3=1^3(cos(3xx(2pi)/3)+isin(3xx(2pi)/3))(12+32i)3=13(cos(3×2π3)+isin(3×2π3))

= cos(2pi)+isin(2pi)cos(2π)+isin(2π)

= 1+i01+i0

= 11