Let z=-1/2+isqrt3/2z=−12+i√32
We have to write zz in trigonometric form in order to apply DeMoivre's theorem
z=r(costheta+isintheta)z=r(cosθ+isinθ)
r=1r=1
costheta=-1/2cosθ=−12
sintheta=sqrt3/2sinθ=√32
So, thetaθ is located in the 2nd quadrant
theta=2pi/3θ=2π3
Therefore, z=cos((2pi)/3)+isin((2pi)/3)z=cos(2π3)+isin(2π3)
We need z^3z3
We use DeMoivre 's theorem,
(costheta+isintheta)^n=cosntheta+isinntheta(cosθ+isinθ)n=cosnθ+isinnθ
z^3=(cos((2pi)/3)+isin((2pi)/3))^3z3=(cos(2π3)+isin(2π3))3
=cos(2pi/3*3)+isin(2pi/3*3)=cos(2π3⋅3)+isin(2π3⋅3)
=cos2pi+isin2pi=cos2π+isin2π
=1=1