How do you take the derivative of tan^ -1(3x^2)?

1 Answer
Jun 23, 2018

(6x)/(1+9x^4)

Explanation:

"differentiate using the "color(blue) "chain rule"

"given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"

"noting that "d/dx(tan^-1x)=1/(1+x^2)

d/dx(tan^-1(3x^2))

=1/(1+(3x^2)^2)xxd/dx(3x^2)

=(6x)/(1+9x^4)