How do you solve z^2-16<0z216<0 using a sign chart?

1 Answer
May 18, 2017

Solution: -4 < z < 4 4<z<4 In interval notation: (-4,4) (4,4)

Explanation:

z^2 -16 < 0 or (z+4) (z-4) < 0z216<0or(z+4)(z4)<0. Critical points are z=-4 , z= 4z=4,z=4

When z < -4 ; z<4; sign of (z+4) (z-4) = (-) * (-) = (+) i.e > 0(z+4)(z4)=()()=(+)i.e>0

When -4 < z < 4 ; 4<z<4; sign of (z+4) (z-4) = (+) * (-) = (-) i.e < 0(z+4)(z4)=(+)()=()i.e<0

When z > 4 ; z>4; sign of (z+4) (z-4) = (+) * (+) = (+) i.e > 0(z+4)(z4)=(+)(+)=(+)i.e>0

Solution: -4 < z < 4 4<z<4
In interval notation: (-4,4) (4,4) [Ans]